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Crystal, off-Bragg: 

f P(O)dAdO 

: (1/N3)[Aq3a3/2 sinE(:rr q3a3)](sin 20B/sin 20)Ra. 
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Abstract 

A series of test calculations of the tangent formula 
derived from Patterson-function arguments [Rius (1993). 
Acta Cryst. A49, 406--409] using single-crystal intensity 
data is presented. This new tangent formula has been 
compared with the results reported [Sheldrick (1990). 
Acta Cryst. A46, 467-473] for (a) the tangent formula 
incorporating the most reliable negative quartets and (b) 
its extension to the phase-annealing method. The success 
rate of the new tangent formula is an order of magnitude 
higher than that of (a), is better than that of (b) when the 
origin can float in at least one direction, and is similar to 
that of (b) for other space groups. 

1. Introduction 

Nowadays, the applicability of direct methods to larger 
crystal structures constitutes an active research field. 
Since the number of correct solutions produced by direct 
methods tends to decrease with increasing size of the 
structure, it is interesting to know which tangent 
formulas are most effective. Eventually, these tangent 
formulas or the functions that they maximize or minimize 
could be selected for further development. Logically, to 
determine their relative efficiencies, the different tangent 
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formulas have to be tested on the same structures. 
Unfortunately, this has not been common practice; to 
date, each new tangent formula has been tested using an 
arbitrary selection of structures. In order to modify this 
situation, the test structures given by Sheldrick (1990) 
have been selected as 'reference' structures in this work. 
In this way, besides testing the tangent formula derived 
from Patterson-function arguments, it has also been 
possible to compare it with the tangent formula that 
incorporates the most reliable negative quartets. A brief 
introduction to both tangent formulas follows. 

1.1. The tangent formula incorporating the most reliable 
negative quartets 

Most multisolution direct-methods procedures (Ger- 
main & Woolfson, 1968) are based on the maximization 
of a certain function expressed in terms of the collectivity 
q~ of phases of the reflections with large E's (the basis 
set). The simplest function of q~ 

Z ( ~ )  = ~-~-~ E_hEh, Eh_ h, COS ~ 3 ( h ,  h ' )  (1) 
h h' 

follows from the product of all the conditional 
probability distributions of triplets that only involve 
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reflections of the basis set, 

l-179(qb31K) <x exp[2N-I/2Z(~)]. (2) 
h,h' 

¢'3(h,h') denotes the phase of the triple phase invariant 
- h + h ' + ( h -  h'), K = 2N-I/ZlE_hEh, Eh_h, [ represents 
the concentration parameter of the associated probability 
distribution and N is the number of atoms in the unit cell. 
For smaller structures, (2) and consequently Z(q~) will be 
close to a maximum with correct phases. As shown by 
Debaerdemaeker, Tate & Woolfson (1985), Z(q~) can be 
maximized by means of the conventional tangent formula 
of Karle & Hauptman (1956), 

~oh =phase of[y~Eh,Eh_h, + ~Ph-h')]}- (3) 

Nevertheless, the correct phases may be far from a 
global maximum of Z(~) for certain space groups (e.g. 
for space group P1). The function Z(~) can be im- 
proved by including the conditional probability distribu- 
tions 77~(qb4) of the most reliable negative quartets 
- h + k  + l + m = 0  (Schenk, 1974; Hauptman, 
1974; Giacovazzo, 1976). The improved function results 
from multiplication of the left-hand side of (2) by 

I-I ~ (~4l r ' ) ,  (4) 
h,k,I 

where K ' =  2N -llE_hEkEIEml denotes the concentra- 
tion parameter of T'(~4). In general, the addition of (4) to 
the left-hand side of (2) requires a weighting factor, q, to 
compensate for the smaller number of reliable negative 
quartets. This modified function can be maximized by 
means of the extended tangent formula, 

99h = phase °f {Y~Eh'Eh-h' -- qN-l/2y~Y~'EkEIEm } k I 

(5) 

a complete test of which is given by Sheldrick (1990). 

1.2. The tangent formula derived from Patterson- 
function arguments 
Z(~) can also be improved once its physical meaning is 
understood. As pointed out by Cochran (1952), Z(q~) 
may be regarded as the reciprocal-space equivalent of the 
integral 

V f pa(r)dr. (6) 
V 

As he argued, it will be large and positive because of the 
peaked nature of the electron-density function p. It is 
difficult, however, to extract more conclusions from this 
physical interpretation. As shown by Rius (1993), Z(q~) 
can be reinterpreted in the form of the integral 

V fPo(u)P(u, ~)du  - Y~EHGH(~). (7) 
V H 

This integral measures the coincidence between the two 
Patterson-type syntheses Po and P(~). The correspond- 
ing Fourier coefficients are the amplitudes of the 
structure factors of the true structure (En) and of the 
squared structure [Gn(q~)], respectively. The analysis of 
integral (7) indicates that Z(~) will be dominated by the 
origin peaks of the Patterson-type syntheses. To avoid 
this, i.e. to give more influence to the nonorigin peaks, 
the origin peak of the observed function Po is subtracted 
so that the modified Z(~) becomes 

)-~(En - (En))Gn(¢). (8) 
n 

This expression can be maximized by means of the 
following tangent formula (Rius, 1993) 

~0h : phase of [ h~, Xh,h'Eh'Eh-h, 

+ )--~(El -- (EH))Eh_! exp iq~ ] (9) 
I / 

with ! denoting those reflections not belonging to the 
basis set, 4~ being the phase of Gi and Xh.h, being defined 
as 

Xh,h' = {[(I -- (EH))/Eh] + [(I -- (fH))/fh, ] 

+ [(I -- (EH))/Eh-h,]}/3. (I0) 

It is interesting to note that (9) uses approximately as 
many large as small E's, without requiring any weighting 
scheme. 

2. Description of the test conditions 

The efficiency test of the tangent formula (9) derived 
from Patterson-function arguments has been performed 
on the test structures used by Sheldrick (1990) to 
determine the effectiveness of the tangent formula 
incorporating the most reliable negative quartets. These 
structures were selected by Sheldrick because the correct 
solutions can be identified from the conventional figures 
of merit and because they cover a variety of situations: 
(i) low- and high-symmetry space groups; (ii) space 
groups with fixed and nonfixed unit-cell origins; and (iii) 
equal-atom structures with the same symmetry but 
different numbers of atoms in the unit cell. 

The test calculations of the tangent formula 
(9) were done with the program XLENS94 in default 
mode (Rius, 1994), using the NES largest and the 
NWEAK [= NES - ( N E S )  I/2] weakest reflections with 
2(sin0)/~. _< 1 A -I. For large NES, (NES) 1/2 will be 
much less than NES, so that NES _~ NWEAK. In 
the calculation of (En), only the large-E and small-E 
sets were used. The values of (En) lie in the interval 
1.02-1.17. No convergence mapping was done. All trials 
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Table 1. Summary of test calculations performed with 
the tangent formula derived from Patterson-function 

arguments [(9)] 

(a) Code name of the test structure; (b) space group; (c) number of 
atoms in the unit cell; (d) number of trials; (e) success rate (%) and, in 
parentheses, the number of refined phases for each test calculation. The 
references for the test structures are: for LOG, Jones, Sheldrick, 
Gliisenkamp & Tietze (1980); for SUOA, Oliver & Strickland (1984); 
for PEP1, Antel, Sheldrick, Bats, Kessler & MiJller (1995); for BHAT, 
Bhat & Ammon (1990); for MBH2, Poyser, Edwards, Anderson, 
Hursthouse, Walker, Sheldrick & Whalley (1986); for HOPS, Hopf, 
Lehne & Jones (1995). 

(a) LOG SUOA PEPI BHAT HOPS MBH2 
(b) P212121 P212121 P212121 Pc R3(hexagonal) PI 
(c) 108 188 340 84 243 54 
(d) 1000 1000 10000 200 1000 300 
(e) 5.7 (210) 0.40 (190) 0.09 (230) 42.5 (210) 9.6 (190) 39.0 (210) 

6.2 (230) 1.80 (210) 0.18 (250) 53.0 (230) 13.3 (210) 47.6 (230) 
5.3 (250) 1.10 (230) 0.08 (270) 71.5 (250) 13.7 (230) 67.6 (250) 

started with random phases and no weighting function 
was employed. 

The criteria for considering a solution to be 'correct' 
were the same as those used by Sheldrick (1990): (a) the 
solution must be clearly identified from the correspond- 
ing 'combined figure of merit ';  and (b) the usual Fourier 
recycling gives a peak list in which most atoms are 
higher than any spurious peak. 

Table 2. Comparison of success rates ( % ) f o r  the 
different tangent formulas 

(a) Tangent formula derived from Patterson-function arguments (9); 
(b) tangent formula incorporating the most reliable negative quartets; 
(c) the same as (b) but combined with the phase-annealing refinement 
procedure (only the best result has been selected; B = corresponding 
initial Boltzmann factor). Values given in columns (b) and (c) have 
been taken from Sheldrick (1990). 

Code (a) (b) (c) B 

LOG 5.30-6.20 2.1 7.2 0.4 
SUOA 0.4--I .8 0.06 0.5 0.3 
PEP1 0.08-0.18 0.01 0.25 0.3 
BHAT 42.5-71.5 0.26 0.97 0.3 
HOPS 9.6-13.7 0.56 2.1 0.2 
MBH2 39.0--67.6 4.7 10.2 0.1 

In view of these results and considering the ease of 
implementation, it can be concluded that the tangent 
formula (9) is the more effective of these two tangent 
formulas. One possible source of progress, especially for 
medium-sized structures with fixed unit-cell origins, 
could be its combination with the phase-annealing 
procedure (Sheldrick, 1990). 

Finally, it should be mentioned that, to get a more 
complete picture, similar test calculations should be 
carried out with the Sayre-equation tangent formula 
(Debaerdemaeker et al., 1985). 

3. Results and concluding remarks 

The most relevant results of the test calculations using 
the tangent formula (9) are listed in Table 1. It may be 
concluded that: 

(a) the tangent formula (9) can solve all test structures; 
(b) the percentage of correct solutions for structures 

with fixed origins (LOG, SUOA and PEP1) tends to be 
lower than for structures having nonfixed origins 
(BHAT, HOPS and MBH2); and 

(c) the success rate decreases with increasing number 
of atoms in the unit cell (LOG > SUOA > PEP1). 

Table 2 summarizes the results obtained with both 
tangent formulas. It is evident from comparison of 
columns (a) and (b) that the tangent formula derived 
from Patterson-function arguments is, at least, one order 
of magnitude more effective than the one incorporating 
the most reliable negative quartets. In addition, 
comparison of columns (a) and (c) indicates that, for 
structures with fixed origins, the tangent formula (9) is 
approximately as effective as the combination of the 
phase-annealing procedure and tangent formula with 
negative quartets. For the remaining structures, i.e. those 
with nonfixed unit-cell origins, comparison of columns 
(a) and (c) indicates that the tangent formula (9) is clearly 
superior. 
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